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Abstract—In this paper, we introduce a simple but effective
method in order to remove haze in foggy images. We name it as
dark pixel detection. Dark pixel is the pixel in haze-free images
with values in all of the RGB colour channels close to zero. With
this method, we can effectively estimate the thickness of the haze
and recover a vivid haze-free scene even when the scene object
is inherently similar to the air light across a large region. In
addition, our algorithm is fast and with good dehazing quality.

Index Terms—computer vision, image process, dark pixel
detection, dehaze

I. INTRODUCTION

Images taken in the environment with heavy fog, haze and
smoke are characterized by lower saturation, poor contrast
and additional noise. Fog, haze and smoke all consist of a
multitude of tiny particles. On a clear day, light reflected from
the scene directly reaches the camera, while in bad weather
light would be partly absorbed and scattered by the particles
along the line of sight. In addition, the reflected light would
be blended with the airlight [8] which is reflected by these
particles. The longer the distance between the scene and the
camera, the more the degradation occurs.

Haze removal is critical for a wide range of image-related
applications, such as surveillance systems, intelligent vehicles,
satellite imaging, and outdoor object recognition systems.
Besides, the by-product of haze removaldepth information is
desired in design of many vision algorithms.

However, enhancing the visibility of haze images is not a
trivial work because haze removal is an ill-posed problem. The
optical model describing the effect of the fog on a haze image
is as follows [8]:

I(x) = R(x)t(x) +A(1− t(x)) (1)

where I is the observed light intensity vector with values in
RGB three channels, R is the scene radiance vector, A is the
constant airlight vector, x is the position of the scene point
and t is the transmission along the line of sight which is the
same in each of the three channels.

In homogeneous atmosphere, the transmission t can be
expressed as

t(x) = e−r∗d(x) (2)
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Fig. 1. Example of dehazed image using dark pixel detection Left: input
haze image, Right: our result

where r is the scattering attenuation coefficient of the atmo-
sphere and d is the scene depth. Equation (1) demonstrates that
the light received by the camera I is in a convex combination
of two kinds of light: the direct attenuation of the scene
radiance R and the constant airlight A. To obtain the haze-free
image, we need to determine the unknown constant A and the
transmission t(x).

In this paper, we propose a novel approach to solve single
image dehaze problem. Our core technique is a fast detection
of dark pixels whose scene radiances are close to zero even
when they are covered by heavy haze. The transmission of
these pixels can be directly computed according to the haze
equation. Then we use these known transmissions to estimate
other unknown pixels. We segment the image into different
blocks according to depth-related information and apply two-
dimension curved surface fitting in each block according to the
known transmissions. Shortly after a fast smooth filtering, the
whole transmission map, the set of all the t(x) in the image,
becomes available. Figure 1 is a implementation example of
our approach.

Our approach depends on no prior or assumption. While all
of the current approaches fail when the image mismatches their
prior or assumption, our approach shows stable performance.In
particular, they all bump into trouble processing an image with
a large region whose color is similar to the air light while our



method still works well, see Figure 4 for example. Thanks
to the size-controlled segmentation step, the recovered image
would not suffer halo artefacts at the depth-discontinuous
edges. Moreover, our algorithm performs fast, being suitable
for real-time applications.

II. RELATED WORK

Since the haze removal problem is ill-posed, additional
information should be retrieved for haze removal generally.
Some techniques utilize multiple images of the same scene [9]
[10] or near-infrared image [11]. In [16], a rough estimation of
the depth function t(x) should be given under user assistance.
Kopf et al. applies the existing geo-referenced digital terrain
and urban models [13]. It’s inconvenient to use these methods
because besides the input image, more information has to be
gathered.

Recently, several haze-removal methods for single image
have been proposed. Each method relies on a different as-
sumption or prior, showed in table I.

TABLE I
DEHAZE APPROACH PRIOR/ASSUMPTION

Fattal [1] Image shading and transmission are locally uncorrelated
Kratz The albedo and depth are statistically independent

Nishino [5]
Zhang Large-scale chromaticity variations are due to

et al [6] transmission while small-scale luminance variations
are due to scene albedo

Peter [7] Objects appearing towards the top of the image
Hartley are usually further away

He Most local patches in haze-free outdoor images
et al [3] contain some pixels which have very low intensities

in at least one color channel.
Tan [2] Contrast should be maximized in haze-free image

However, as authors describe in their papers, their methods
fail in some cases respectively when the assumptions or prior
do not hold. One of their common drawbacks is transmission
estimating failure when the relative proportion of the RGB
values of the scene, over a large compact region, is inherently
similar to that of the airlight. Typical examples are the grey
surface of a highway and a white wall. This happens because
the proportion of their RGB channel values approximates
1:1:1, which resembles that of the airlight.

A. Dark Pixel Detection

Dark-object subtraction is one of the basic methods in
remote sensing for haze removal [12] . Dark object is an object
that reflects little light. When a dark object is found, spatial-
homogeneous haze can be removed by subtracting a constant
value corresponding to this object. However, this method needs
users to choose the dark object in the image. Another drawback
is that when coming across images with spatial-variant haze,
this method fails. In this paper, we generalize this subtraction
idea, using an automated alternative.

In fact, the nature is full of shadows, which is also a kind of
dark object. The appearance of shadow is due to obstruction
of light by some object. Generally, an image that needs haze
removal has a deep depth of field, which implies there are

a multitude of objects in the images. Since the sun is an
approximately parallel light source, these objects in the scene
become shelters for areas nearby and produce lots of shadows.
Because of these shadows and other inherently dark objects,
we could find a large number of widespread dark pixels in the
image.

We observe that dark pixels, either in haze-free images or
in hazy images, have two characteristics which we regard as
conditions for selection:

1) Channel Transformation: The color of the dark pixel in
the input image is non-pure under white light source no matter
how heavy the haze is, because the colors of both the scene
radiance of the dark object and the haze are non-pure. If we
transform I from RGB space into Y CbCr space, both Cb and
Cr of dark pixels are close to 128, where Cb and Cr range
from 16 to 240. In our algorithm, this condition is expressed
as.

(Cb − 128)2 + (Cr − 128)2 < θ (3)

2) Neighboring Domain : The dark pixel has a smaller
luminance than pixels in its neighboring domain unless some
of them are also dark pixels. To avoid false positive result, a
stricter condition is performed that the largest value in RGB
channels of the target pixel must be smaller than the minimum
values in RGB channels of its neighboured pixels. To reduce
computation cost, we merely choose four representative pixels
nearby: each pixel, 10 pixels the right, left, above, and below.
A large set of experiment confirms the effectiveness of our
method.

Before detecting dark pixels, we should guarantee that light
source of the input image is white light source, so white
balance is introduced ahead of detection. Since the color of
haze should be white, the reference white points are chosen
to be the haze-opaque region which would be discussed in
section III C.

Besides, in images of low quality, some unpleasant noise
may mistakenly become our target dark pixels. In this paper,
we assume that all the input images have been de-noised,
otherwise we employ median filter for preprocessing.

To examine the validity of our method, we collect about
200 landscape images from Flickr.com for experiment. Half
of the images are haze-free while the rest are hazy. Figure 2
shows several sample images and the corresponding dark pixel
distributions. The experimental results illustrate that there are
a large number of dark pixels, generally ranging from 4000 to
20000, in any 480*600 input image. More importantly, these
pixels are located in almost every corner in the image, which
demonstrates the broad distribution of dark objects in an input
image.

Since dark pixels reflect little light, the haze-free radiance
R of these pixels can be treated as the zero vector. Taking
minimums on both sides of Equation 1 and then doing simple
algebra, we can obtain the transmissions of these pixels:



(a) (b) (c)
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Fig. 2. Images and corresponding dark pixel maps. (a)(b)(c): Example images in our large data set. (d)(e)(f): The corresponding dark pixel distribution. Dark
pixels is shown in pure white color.

t(x) = 1− minr,g,b{I(x)−R(x)t(x)}
Ac (4)

≈ 1− minr,g,bI(x)
Ac

where minr,g,bI(x) is the minimal color channel of I(x)
and Ac is the corresponding color channel of vector A. Using
the transmissions of these wide-spread dark pixels, we can
estimate the transmissions of their neighboring pixels in the
whole image.

B. Segmentation and 2D Fitting

Given lots of comparatively accurate dark pixel transmis-
sions, the task of obtaining the whole transmission map
becomes an interpolation or fitting problem. We employ
the 2D linear fitting instead of interpolation because we
observe the transmission t would not change sharply in a
local area with continuous depth. Moreover, linear fitting is
less computationally intensive, yielding comparable results at
the same time. Regarding depth discontinuity, which affects
transmission estimate accuracy to a large extent, we consider
image segmentation to recognize and segment the image into
various blocks before fitting. We basically adopt the algorithm
of Felzenszwalb and Huttenlocher [15] for two reasons:

1) It is computationally efficient running in O(nlogn) time
for n image pixels

2) It can easily control the size of the blocks by merely
adjusting the parameter k, being suitable for controlling
the accuracy of the 2D fitting.

However, the segmentation criterion is not color. The best
wish is segmenting the image according to t or the distance

between the scene point and the camera, though it is impos-
sible because t is exactly what we want and the distance is
closely related to t. But according to Equation 1, if Rc = 0,
then

t = 1− Ic

Ac
(5)

where c could be R, G or B color channel, indicating that t has
a linear relation with Ic , and the first order coefficient − 1

Ac

in each of the RGB channel is the same due to white balance.
According to 1 again, to minimize Rc(x) in order to maintain
the approximate linear relation between t and Ic, we replace
the vector I with the minimum value in the RGB channels of
each pixel in the image. We called this new generated black-
and-white image dark map . Segmentation is performed on
the dark map.

After dividing the image into different blocks, we first
do linear fitting in each block which contains more than 20
dark pixels for robustness: using the transmission and position
values of these pixels to calculate the coefficients of the fitting
formula

t = ax+ by + c (6)

where x and y are horizontal and vertical coordinate, respec-
tively. For each of the rest blocks, we choose pixels close
to the block to estimate the coefficients. In our method, these
pixels are chosen in the smallest rectangle containing the block
on which fitting is performed. Then we employ guided image
filter [14] to improve the accuracy of the rough transmission



map. We choose the dark map as the guided image and set
ε = 10−2 and r = 20.

To achieve high level of accuracy when employing the
2D linear fitting, the size of the blocks should not be too
large. Thanks to the algorithm proposed by Felzenszwalb and
Huttenlocher [15] , we can set the coefficient k in the algorithm
to control the block size. In our experiment, k is set 100 in a
480*600 input image to meet the requirement.

C. Airlight and Haze-Opaque Region

Apart from transmission map, the estimation of the airlight
color A is also important. According to [8], A should be the
color values of the scene point with infinite distance away from
the camera. It can also be comprehended in this way: when
the distance is infinite, t(x) = 0 according to Equation (2),
and hence I(x) = A according to Equation 1. Consequently,
A can be best estimated in the most haze-opaque region. Tan
[2] regard the brightest pixel as the air light, but the brightest
pixel in an image may be a small white object such as a white
goose or a white wall, or even be the noise. Tarel et al [4]
apply white balance on the image and assume that A has a
larger intensity than that of any other pixel. This method also
encounters the problem Tan suffers.

Thanks to the size-controlled segmentation algorithm, we
can avoid this problem and pick out the most haze-opaque
region correctly. When the coefficient is set appropriately
according to the image size, all blocks segmented are of proper
size. As a result, those small pieces of pixels on the ground
with brightest pure white color seldom constitute an entire
block. We first compute the average value for each block in
dark map. The block with the largest average value is chosen
to be the haze-opaque region. Then A is estimated by the
average value in each of the RGB channels in this region in
the original input image.

D. Recovering the Scene Radiance

Now that the values of A and t(x) are obtained, the scene
radiation can be recovered by solving Equation (1) for each
pixel.

R(x) = A− A− I(x)

t(x)
(7)

But when the denominator t(x) is close to zero, the error
of R(x) R(x) will approach infinity. Hence, a lower bound
of t(x) should be set. Unlike previous methods in which the
lower bound of t(x) remains the same in any input image,
our method is image-oriented. Since the smallest t(x) always
appears in the haze-opaque region, we regard the largest t(x)in
that region as the lower bound

t0 = 1− minΩId
Ac

(8)

where Ω is the block of haze-opaque region and Id is the
value in dark map. Ultimately, the scene radiance is computed
as follows:

R(x) = A− A− I(x)

max{t(x), t0}
(9)

For review, all the steps of our method are presented in order
as follows. Corresponding effect image is shown in figure 3

1) Compute dark map
2) Size-controlled segmentation according to dark map
3) Target the haze-opaque region and estimate the con-

stant airlight value
4) Detect dark pixels
5) Fit the transmission map in each block
6) Recover scene radiance

III. EXPERIMENT AND DISCUSSION

The experiments are conducted on popular images He,
Fattal, Tarel and Hautiere have tested. We set the parameter k
in 2D fitting as 100 and θ in Equation 3 as 10.

A. Processing Time

Using a 1.8GHz Intel 2 duo 2 Processor to process 480*600
pixel image, Table II shows the average processing time.

TABLE II
AVERAGE DEHAZE TIME

Approach Fattal [1] He et al [3] Tarel [4] Dark Pixel
Time(s) 385 15.26 0.17 0.1-1.5

We can find that our approach performs at the similar level
to that of Tarel and Hautieres, but much faster than Fattal and
He et al. However, Tarel and Hautieres method faces the risks
of producing artifacts close to the patch transitions and thus
distort the global contrast.

B. Dehaze Accuracy

Currently, most dehaze approaches suffer from a situation
which is also mentioned by He et al. when the scene objects
are inherently similar to the atmospheric light and shadow is
cast on them. Dehazed white marble becomes yellow under
this situation. He et al’s dehazing technique relies on the
dark channel prior: most local patches in haze-free outdoor
images contain some pixels which have very low intensities
in at least one color channel.It divides the input image into
15pixel*15pixel patches and directly assumes that there is at
least one such pixel in each patch. The transmission of this tar-
get pixel is calculated and used to represent the transmissions
of the rest pixels in that patch. After a global smoothing step,
the whole transmission map becomes available. This dehazing
process implies that once the transmission of the target pixel
has a wrong estimation, the whole patch suffers the same as
that of an ordinary marble stone.

However, dark pixel detection overcomes it since we do
not use any prior but processes alternatively: If dark pixel
is detected within a block, we use it for transmit estimation.
Otherwise, we ignore the block. Figure 4 displays our im-
provement compared with He’s approach.
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Fig. 3. Steps in conducting dark pixel detection dehaze: (a) input image; (b) segmentation step ; (c) detect dark pixels; (d) 2D linear fitting; (e) smooth for
transmission map (f) our result.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison with He’s dark channel approach: (a) input image with
while marbles; (b) He et al [3]’s transmission map ; (c) He et al [3]’s result;
(d) image with dark pixels; (e) our transmission map (f) our result.

Figure 4(e) is the transmission map. Note that the gradient
of our transmission map is consistent with the field depth of the
scene. In contrast, He’s transmission map fails because people
in the image should be of same depth as marbles they stand
on, thus the transmission should be continuous. Our result in
Figure 4(f) recover the original pure white color of marbles
on the right corner of the image while He’s result in Figure
4(c) makes the marble to be yellow.

C. Image Quality

To evaluate dehazed image quality, we adopted
N.Hauti‘ere’s [17] method to compare normalized ascension
of contrast degree. Table III demonstrates the result. Our
approach ranks best among Fattal’s and He et al’s. The
contrast degree index values vary with images but this can
be a quantitate metric of dehaze approaches. Figure 5 shows
more results of dehazing approach comparison, we can
conclude that our approach recovers hazed image with better
colour contrast.

TABLE III
CONTRAST DEGREE

C-index He et al [3] Fattal [1] Dark Pixel
ny12 0.8302 0.6860 1.000
ny17 0.8640 0.7024 0.9147
ny1 0.4034 0.1973 0.6603

D. Improvement

Since our method relies on segmentation, an unreasonable
segmentation could yield a bad result. Background pixels in
haze-opaque regions disturb our effect in some extend. As
shown in Figure 6, although we recover most of the scene
radiation well, the transmission of the haze-opaque region is
wrong because this region includes the river whose distance
from the camera is much shorter. On the left corner of the
Figure 6(d), the atmosphere turns into blue, thus a failure case.

IV. CONCLUSION

In this paper, we introduce a novel dark pixel detection
approach in order to remove haze in foggy images. We
estimate the thickness of the haze by detecting dark pixels,
segmenting blocks, fitting transmission maps, and calculating
airlight. The approach is especially effective when the scene



(a) (b)
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Fig. 6. Example when dark pixel detection fails the dehaze: (a) input image; (b) Fattal’s [1] ; (c) He’s et. al [3]; (d) Ours.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. More results comparison: Top: input haze image; Middle: He’s result;
Bottom: our result

object has similar colour to the airlight in a large area. We
also experiment with the speed of the algorithm and resulting
quality using existed methods. Hazed images processed by
dark pixel detection recover clear vision and retain fine details,
demonstrating the effectiveness and efficiency of our method.
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