DOT/FAA/CT-89/5

8

FAA Technical Center Atlantic City International Airport

N.J. 08405

Statistics on Aircraft Gas Turbine Engine Rotor Failures that Occurred in U.S. Commercial Aviation During 1983

R.A. DeLucia J.T. Salvino

Naval Air Propulsion Center Trenton, New Jersey STATE MADE AND ADDRESS OF

JUN 5 Recti

March 1989

Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

DOT/FAA CT-89/5

DOT/FAA CT-89/5

Statistics on aircraft gas turbine engine rotor failures that occurred in U.S. commercial aviation during 1983.

NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog M	ło.				
	F		ana					
DOT/FAA/CT-89/5								
4. Title and Subtitle			5. Report Date					
STATISTICS ON AIRCRAFT GAS	TURBINE ENGINE	ROTOR	March 1989					
FAILURES THAT OCCURRED IN U	.S. COMMERCIAL	AVIATION	6. Performing Organizati	on Code				
DURING 1983			PE32					
7 Author(s)			8. Performing Organizati	on Report No.				
R. A. Delucia a	nd J. T. Salvi	no	NAPC-PE-184	<i>,</i>				
9. Performing Organization Name and Addre			10. Work Unit No. (TRAI	5)				
Commanding Officer								
Naval Air Propulsion Center			11. Contract or Grant No.					
PO Box /1/6		L	DOT/FA/INAAF	.98				
Irenton, NJ 08628-0176			Type of Report and F	eriod Covered				
12. Sponsoring Agency Name and Address	-		Final Re	port				
Federal Aviation Administra	n tion		· Indi Ne	Porc				
Technical Center	LION	-	14. Sponsoring Agency C	ode				
Atlantic City International	Airport, N.I	08405	ACD-210					
15. Supplementary Notes	marpore, no	00405	100-210					
Project Manager: B. C. H	Yenton - Engine	/Fuel Safety Br	ranch					
	FAA Te	echnical Center						
16. Abstract								
the failures and, of these, involved blade fragments, 9 failures occurred and four failures occurred during the This service data analysis yearly. The data support f certification standards, and	9 were uncontain 5.4 percent of were uncontain the takeoff and is prepared on light safety and d cost benefit	ained. The pre which were con ed. Fifty-nine climb stages of a calendar yea nalyses, propos analyses.	dominant failur tained. Five d percent of the flight. r basis and pub ed regulatory a	es isk 172 lished ctions,				
17. Key Words		18. Distribution Stateme	tnt					
Air Transportation		Decompost is on						
Aircrait Hazards		Document is av	ailable to the	public				
Adroroft Cofota		through the Na	ailable to the tional Technica	public 1				
Aircraft Safety	41	through the Na Information Se	ailable to the tional Technica rvice, Springfi	public 11 Leld,				
Aircraft Safety Gas Turbine Engine Rotor Fa	ilures	through the Na Information Se Virginia 2216	ailable to the tional Technica rvice, Springfi l	public al Leld,				
Aircraft Safety Gas Turbine Engine Rotor Fa Containment 19. Security Classif. (of this report)	ilures 20. Security Class	through the Na Information Se Virginia 2216	ailable to the tional Technica rvice, Springfi 1 21. No. of Pages	public al ield, 22. Price				
Aircraft Safety Gas Turbine Engine Rotor Fa Containment 19. Security Classif. (of this report)	ilures 20. Security Class	through the Na Information Se Virginia 2216	21. No. of Pages	public il ield, 22. Price				

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Technical Sugar Decembering Sugar

ACKNOWLEDGMENTS

We thank the following Federal Aviation Administration personnel and offices for their cooperative effort in the preparation of this report:

- o Mr. Bruce Fenton, Project Manager, Engine/Fuel Safety Branch, ACD-210, for his technical assistance.
- o New England Region, Burlington, MA, for providing verification of the uncontained engine rotor failure occurrences during calendar year 1983.
- o Flight Standards National Field Office, Oklahoma City, OK, for providing the basic data used to prepare this report.

ACTOREMON ELEMENTS

We thank the following Redenal Aviation Administration personnel and offices for their cooperative effort in the preservisor of this report:

- o Mr. Bruce Festion, Project Nanager, Engine/Fuel Safety Branch, Mil-210, Jon his technical assistance.
 - o New England Augico, Burlington, MA, for providing verification of the uncontained engine refor failure occurrences during caleddar year 1983.
 - o Flight Standards National Field Office, Okianowa City, OK, for providing the basic data used to prepare this report.

ų,

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY	vii
INTRODUCTION	1
RESULTS	1
DISCUSSION AND CONCLUSIONS	3
DISCUSSION AND CONCLUSIONS	3

APPENDICES

A - DATA OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION FOR 1983

LIST OF ILLUSTRATIONS

Figur	re	Page
1	Incidence of Engine Rotor Failures in U.S. Commercial Aviation - 1983	5
2	Incidence of Engine Rotor Failures in U.S. Commercial Aviation According to Affected Engine Fleet Hours for each Engine Model - 1983	6
3	Component and Fragment Type Distributions for Contained and Uncontained Rotor Engine Failures (Failures that Produced Fragments) - 1983	7
4	The Incidence of Engine Rotor Failures in U.S. Commercial Aviation According to Engine Type Affected - 1983	8
5	Gas Turbine Engine Failure Rates According to Engine Model and Type - 1983	9
6	Engine Rotor Failure Cause Categories - 1983	10
7	Flight Condition at Engine Rotor Failure - 1983	11
8	Uncontained Engine Rotor Failure Distributions According to Cause and Flight Conditions - 1976 through 1983	12
9	The Incidence of Uncontained Engine Rotor Failures in U.S. Commercial Aviation - 1962 through 1983	13

7480103 30 33801

A > DATALOF ENGINE SOTOR FAILURES IN U.S. COMMERCIAL AVIATION FOR 1983

1111 08 110020011 10121

EXECUTIVE SUMMARY

This service data analysis is prepared on a calendar basis and published yearly. The data support flight safety analyses, proposed regulatory actions, certification standards, and cost benefit analyses. The following statistics are based on gas turbine engine rotor failures that have occurred in United States commercial aviation during 1983.

One hundred and seventy-two rotor failures occurred in 1983. These failures accounted for approximately 10.8 percent of the 1588 shutdowns experienced by the U.S. commercial fleet. Rotor fragments were generated in 96 of the failures and, of these, 9 were uncontained. This represents an uncontained failure rate of 1.2 per million gas turbine engine powered aircraft flight hours, or 0.4 per million engine operating hours. Approximately 7.6 and 20.6 million aircraft flight and engine operating hours, respectively, were logged in 1983.

Turbine rotor fragment producing failures were approximately two times greater than that of the compressor rotor fragment producing failures (61 and 27 respectively, of the total). Fan rotor failures accounted for 8 of the fragment-producing failures experienced.

Blade failures were generated in 89 of the rotor failures; 4 of these were uncontained. The remaining 7 fragment generating failures were produced by disk, rim, and seal.

Of the 110 known causes of failures (because of the high percentage of unknown causes of rotor failures, the percentages were based on the total number of known causes), the causal factors were (1) foreign object damage--49 (44.5 percent); (2) secondary causes--35 (31.8 percent); (3) design and life prediction problems--23 (20.9 percent); and (4) operational--3 (2.7 percent). One-hundred and two (59.3 percent) of the 172 rotor failures occurred during the takeoff and climb stages of flight. Sixty (62.5 percent) of the 96 rotor fragment producing failures and 7 (77.8 percent) of the 9 uncontained rotor failures occurred during these same stages of flight.

The incidence of engine rotor failures producing fragments has remained relatively constant when compared to 1982 (96 in 1983 and 88 in 1982). The uncontained engine rotor failures has decreased 43.8 percent in 1983 (16 in 1982 and 9 in 1983). The 9 year (1975 through 1983) average of uncontained engine rotor failures has decreased from 16 to 15.

vii

FRAMMURS BY HOUSEN B

This service deta anniput is propared on a caleNeur bests and published jearly. The data support filter: affety analyses, proposed regulatory actions, certification standards, and cost benefit analyses. The following statistics are based on que terbine angline robur failures shat have occurred in United States commercial existion buring 1988.

One nundred and seventy-two rotar faitures occurred in 1963. These Calleres accounted for approximately 10.8 percents of the 1668 shutdowis experienced by the U.S. commercial filent. Rator fragments were genurated in 30 of the failures and of these. 9 were uncontained. This represents an uncontained failure rate of 1.2 per attilion gas turbine explose powered affectart flight busine, or 0.4 per militan angine operating hours. Approximitely 7.6 and 20.6 attilion affectaft filght and engine spending nours, respectively, were logged in 1961.

Turbing rotor frequent producing fatienes were approximately two times producer than that of the compressor rotor frequent producting failures (61 and 2) respectively, of the total). Fan rotor failures accounted for 8 of the frequentproducing failures experienced.

Blade failures white generated in 80 of the rotor failures; 4 of these were uncontained. The requiring 7 frequency generating failures were produced by dive. rig. and seals

Of the 110 known causes of failures (bacause of the high percentage of untrown causes of rotar failures, the percentages water based on the total number of hown causes), the causal factors water (1) formion object (amage--49 (44.6 percent)) (2) shrahdary causes--25 (31.8 percent); (3) design and iffe prediction of the problems--23 (20.9 percent); and (4) operational--3 (2.7 percent). One-hundred and two (53.8 percent) of the 172 rotor failures occurred doring the taken's and two (53.8 percent) of the 172 rotor failures occurred doring the taken's and the stages of flight. Sists (62.5 percent) of the 9 uncontained rotor failures occurred doring the taken's and these same stages of flight.

The incidence of angulae rotar failures producing fragment; has remained relatively constant when coopered to 1982 (36 (n 1983 and 28 in 1982). The uncontained engine rotor failures has decreased 43.6 percent in 1983 (16 in 1982) and 9 in 1983). The 9 year (1975 through 1983) everyge of uncontained entire rotor failures has decreased from 16 to 18.

INTRODUCTION

This report is sponsored by the Federal Aviation Administration (FAA) Technical Center, located at the Atlantic City International Airport, New Jersey.

This service data analysis is published yearly. The data support flight safety analyses, proposed regulatory actions, certification standards, and cost benefit analyses.

The intent and purpose of this report is to present data as objectively as possible on rotor failure occurrences in United States commercial aviation. Presented in this report are statistics on gas turbine engine utilization and failures that have occurred in U.S. commercial aviation during 1983. These statistics are based on service data compiled by the FAA Flight Standards District Office. The National Safety Data Branch of the FAA Aviation Standards National Field Office disseminate this information in a service difficulty data base and the Air Carrier Aircraft Utilization and Propulsion Reliability Report. The compiled data were analyzed to establish:

1. The incidence of rotor failures and the incidence of contained and uncontained rotor fragments (an uncontained rotor failure is defined as a rotor failure that produces fragments which penetrate and escape the confines of the engine casing).

2. The distribution of rotor failures with respect to engine rotor components, i.e., fan, compressor, or turbine rotors and their rotating attachments or appendages such as spacers and seals.

3. The number of rotor failures according to engine model and engine fleet hours.

4. The type of rotor fragment (disk, rim, or blade) typically generated at failure. ermulian norm and bee manufactorenesses follo

5. The cause of failure.

6. The flight conditions at the time of failure.

7. Engine failure rate according to engine fleet hours. Figure 2 and rates the filling conditions that engrand when the vertices refer fallings occurred. Checklandred has been (SQL) periods) of the fill rates refleres

RESULTS The data used for analysis are contained in Appendix A. The results of these analyses are shown in figures 1 through 9.

Figure 1 shows that 172 rotor failures occurred in 1983. These rotor failures accounted for approximately 10.8 percent of the 1588 shutdowns experienced by the gas turbine powered aircraft fleet during 1983. Rotor fragments were generated in 96 of the failures experienced and, of these, 9 (9.4 percent of the fragmentproducing failures) were uncontained. This represents an uncontained failure rate of 1.2 per million gas turbine engine powered aircraft flight hours, or 0.4 per million engine operating hours.

Approximately 7.6 million and 20.6 million aircraft flight and engine operating hours, respectively, were logged by the U.S. commercial aviation fleet in 1983. Gas turbine engine fleet operating hours relative to the number of rotor failures and type of engines in use are shown in figure 2.

Figure 3 shows the distribution of rotor failures that produced fragments according to the engine component involved (fan, compressor, turbine), the type of fragments that were generated, and the percentage of uncontained failures according to the type of fragment generated. These data indicate that:

1. The incidence of turbine rotor fragment producing failures was approximately two times greater than that of the compressor rotor fragment producing failures; these corresponded to 61 (63.5 percent) and 27 (28.1 percent), respectively, of the total number of rotor failures. Fan rotor failures accounted for 8 (8.3 percent) of the fragment producing failures experienced.

2. Blade fragments were generated in 89 (92.7 percent) of the rotor failures; four (4.4 percent) of these were uncontained. The remaining 7 (7.3 percent) rotor fragment failures were produced by disk, rim, and seal. While the disk and seal failures were a relatively small percentage of the total failures, 80 percent of disk failures and the one seal failure were uncontained.

Figure 4 shows the rotor failure distribution among the engine models that were affected and the total number of the models in use.

Figure 5 contains a compilation of engine failure rates per million engine flight hours according to engine model, engine type, and containment condition. The engine failure rates per million flight hours by engine type are turbofan--7.4, turboprop 11.8, turboshaft--147.9, and turbojet--none. Uncontained engine failure rates per million flight hours by engine type were turbofan--0.5, turboprop--0.3, turboshaft and turbojet--none.

Figure 6 shows what caused the rotor failures to occur. Of the 110 known causes of failure (because of the high percentage of unknown causes of rotor failure, the percentages were based on the total number of known causes), the causal factors were (1) foreign object damage--49 (44.5 percent); (2) secondary causes--35 (31.8 percent); (3) design and life prediction problems--23 (20.9 percent); and operational--3 (2.7 percent).

Figure 7 indicates the flight conditions that existed when the various rotor failures occurred. One-hundred and two (59.3 percent) of the 172 rotor failures occurred during the takeoff and climb stages of flight. Sixty (62.5 percent) of the rotor fragment producing failures and seven (77.8 percent) of the uncontained rotor failures occurred during these same stages of flight. The highest number of uncontained rotor failures, six (66.7 percent), happened during takeoff.

Figure 8 is a cumulative tabulation that describes the distribution of uncontained rotor failures according to fragment type, engine component involved, cause category, and flight condition (takeoff and climb are defined as "high power," all other conditions are defined as "low power") for the years 1976 through 1983.

This figure is expanded yearly to include all subsequent uncontained rotor failures. These data indicate that for "secondary causes" the number of uncontained failures was approximately seven times greater at "high" power than "low" power (namely 27 and 4). For "design and life prediction problems" the number of uncontained failures was approximately three times greater at "high" power than "low" power (namely 21 and 8); and for "foreign object damage" the number of uncontained failures was seven times greater at "high" power than "low" power (namely 7 and 1). This tabulation also indicates that of the 120 total uncontained incidences, blade failures accounted for 70.0 percent; disks failures, 17.5 percent; rim failures, 5.8 percent; and seal/spacer failures, 6.7 percent.

Figure 9 shows the annual incidence of uncontained rotor failures in commercial aviation for the years 1962 through 1983. During 1983, the incidence of uncontained rotor failures (9), was 56.3 percent lower than those reported the previous year, 1982. Over the past 9 years, 1975 through 1983, an average of 15 uncontained rotor failures per year have occurred. During the same time period, the rate of uncontained rotor failures has remained relatively constant at an average of approximately one per million engine operating hours.

DISCUSSION AND CONCLUSIONS

The incidence of engine rotor fragment-producing failures has remained relatively constant when compared to 1982 (88 in 1982 and 97 in 1983). The uncontained engine rotor failures has decreased 43.8 percent (9 in 1983 and 16 in 1982). The 9-year (1975 through 1983) engine rotor failures has decreased from 16 to 15.

Of the 9 uncontained events that occurred during 1983, 3 (33.3 percent) involved turbine rotors, one (11.1 percent) involved compressor rotors, and five (55.6 percent) involved fan rotors.

The predominant cause of failure was attributed to foreign object damage (44.5 percent of the known failures) and one uncontained failure occurred in this category. Secondary causes (31.8 percent of the known failures) and design and life prediction problems (20.9 percent of the known causes) had three and two uncontained failures, respectively. The causes of the remaining three uncontained failures (33.3 percent) are unknown.

Uncontained failures occurred in four of the ten flight modes; i.e., six during takeoff (66.7 percent), one during climb (11.1 percent), one in cruise (11.1 percent), and one during taxi/ground handling (11.1 percent).

The higher incidences of uncontained rotor failures in calendar years 1967 through 1973 (except for 1968) were probably due to the introduction of newly developed engines entering the commercial aviation fleet such as the JT9D and CF6 engines.

Structural life prediction and verification is being improved by the increased use of spin chamber testing by government and industry as a means of obtaining failure data for statistically significant samples. In addition, increased development and application of high sensitivity nondestructive inspection methods should increase the probability of cracks being detected prior to failure. The capability to reduce the causes of failures from secondary effects is also being addressed through technology development programs. However, causes due to foreign object damage still appear to be beyond the control or scope of present technology.

Figure 9 shows the hannel incidence of uncertained rotor failures in conversial aviation for the years 1992 through 1983. During 1983, the incidence of uncontained rotor failures (9), was 56.3 percent lower than those reported the previous year. 1982. Over the past 8 years, 1975 through 1983, in everage of 15 uncontained rotor failures per year have occurred. During the sete time period, the rate of uncontained rotor failures has causined relatively constant at an average of approximately are per whillon engine operating hours.

202120/2000 0040 4012200210

The insidence of engine roter fragmant-producing feilures has reacined relatively constant when compared to 1962 (88 in 1982 and 97 in 1983). The proximilized angute rotor failures has dedreased 43.8 cercant (9 in 1963 and 16 in 1962). The s-year (1975 through 1983) engine rotor failures has decreased from 15 to 15.

Of the 9 uncontained events that occurred during 1983, 3 (33.3 percent) involved turbine rotors, one (15.1 percent) involved compressor rotors, and five (55.0 percent) involved fam rotors.

The predominant cause of follows was attributed to foreign object damage (24.5) percent of the brown followes) and one uncontained failure occurred in this category. Secondary causes (31.3 purcent of the source failures) and design and life prediction problems (20.9 percent of the known causes) had three and two uncontained failures, respectively. The causes of the remaining three uncontained failures (33.3 percent) are inknown.

Decombained Failures occurred in Four of the ten flight modes: i.e., six during takeoff (db,/ percent), one during climb (11.1 percent), one in cruise (11.1 percent), and one during text/ground handling (11.1 percent).

The higher incidences of uncontained rolor failures in calendar years 2007 through 1923 (except for 1968) were erobably due to the introduction of newly developed engines entering the commercial eviation fleet such as the JTPD and Cr6 engines.

Lines of Dig Incidence of Weiter while des for the Not Destein Dig without a structure in

5

FIGURE 1. INCIDENCE OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION - 1983

FIGURE 2. THE INCIDENCE OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION ACCORDING TO AFFECTED ENGINE FLEET HOURS FOR EACH ENGINE MODEL - 1983

ENGINE	TYPE OF FRAGMENT GENERATED												
ROTOR COMPONENT	DISK		R	RIM		BLADE		EAL	TOTAL				
	TF	UCF	TF	UCF	TF	UCF	TF	UCF	TF	UCF			
FAN	2	2	0	0	5	2	1	1	8	5			
COMPRESSOR	1	1	1	0	25	0	0	0	27	1			
TURBINE	2	1	0	0	59	2	0	0	61	3			
TOTAL	5	4	1	0	89	4	1	1	96	9			

NOTES:

7

(1) FAILURES THAT PRODUCED FRAGMENTS

TF - TOTAL FAILURES

UCF - UNCONTAINED FAILURES

100

FIGURE 3. COMPONENT AND FRAGMENT TYPE DISTRIBUTIONS FOR CONTAINED AND UNCONTAINED ROTOR ENGINE FAILURES - 1983

AVIATION ACCORDING TO ENGINE TYPE AFFECTED - 1983

ω

	AVERAGE	ENGINE FLIGHT	NUM	BER OF	FAIL	URES	FATL ENGI	ENGINE FLIGHT HOURS				
MODEL	NUMBER IN		С	NC	N	TOTAL	С	NC	N	TOTAL	_	
TURBOFAN												
JTED	4646	11.3653	42	4	37	83	3.7	0.4	3.3	7.3		
JTED	492	0.7849	1	4	Э	θ	1.3	5.1	3.0	10.2		
JTED	654	2,2595	9		4	13	4.0	0	1.8	5.8		
CF6	455	1.2991	10		Э	13	7.7	0	2.3	10.0		
RB211	332	0.9234	5	0	1	6	5.4	Ø	1.1	6.5		
CF708	31	0.0205	0	0	1	1	Ø	ø	48.8	48.0		
SPEY	85	0.1865	0	0	0	0	Ø	ø	0	ø		
JT15D	Э	0.0013	8	0	Ø	Ø	ø	0	8	ø		
TFE731	7	0.0061	0	0	0	0	ø	0	Ø	ø		
CFM56	149	0.3590	2	0	1	Э	5.6	ø	2.8	8.4		
ALF592	5	0.0082	1	Ø	ø	1	122.0	ø	ø	122.0		
TOTAL	6859	17.2138	78	θ	50	129	4.1	0.5	2.9	7.5		
LIRBOPROP												
PTEA	910	1.7491	11	Ø	10	21	6.3	0	57	12.0		
581	367	0.5221	1	ĩ	5	7	1.9	1.9	3.6	13.4		
TPE331	335	0.6610	8	2	Э	3	Ø	Ø	4.5	4.5		
DART	248	8.3343	4	0	. 1	5	12.0	Ø	3.0	15.0		
BASTAN	15	0.0256	0	0	0	0	Ø	Ø	0	Ø		
TYNE	12	8.8226	1	0	2	Э	442	Ø	88.5	132.7		
TOTAL	1987	3.3147	17	1	21	39	5.1	0.3	6.3	11.0		
RBOSHAFT												
AST14	10	0.0213	0	0	Ø	0	0	0	0	Ø		
259C	5	0.0037	0	0	0	Ø	Ø	0	Ø	Ø		
LST101	7	8,0064	0	0	0	0	Ø	Ø	Ø	Ø		
GEH618	4	8.8824	0	8	5	5	ø	Ø	2083.3	2083.3		
TOTAL	26	0.0338		0	5	5	ø	0	147.9	147.9		
TURBOLET												
JT4A	47	8.8257	0	8	Ø	0	0	Ø	0	0		
AVON	Э	8,3034	ø	Ø	0	ø	ø	ø	0	8		
C.I618	7	0.0845	0	0	ø	0	ø	ø	0	0		
TOTAL	57	6.0306	8	0	8	0	0	0	8	0		

FIGURE 5. GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE - 1983

9

Lylf Got prated him of

FIGURE 7 FLIGHT CONDITION AT ENGINE ROTOR FAILURE - 1983

KTH	TUR	8	1	TH	4			5	1	2	1			50		10		105		3	1	1	1 22	2	Э	
RIM	COM. TUR	2	20	- VI		-					1			10	101	10		Insi		Э	1		5 1	1		7
DISK	COM. TUR. FAN	4	1 Э	11/1	1			1			1									1 4	2	1	75	1	1	21
LUF CO	of PARS	ENT CONT	STOR OW	ATED COR	DE MARTIN	No of the second	CONO 25	LON LON HILL	LOW LOW	Ens over	H B	LOW	ONTE SAL	H T T	ATRO C	Sear Sk	TOWN	LOW	SSEM IN	H	LOL	-TION ANTINO	REPORT IN HI	LOL	ABTOT ANK	NTOTA

(1) TAKE OFF AND CLIMB ARE DEFINED AS "HIGH POWER" AND ALL OTHER CONDITIONS ARE DEFINED AS "LOW POWER."

FIGURE 8. UNCONTAINED ENGINE ROTOR FAILURE DISTRIBUTIONS ACCORDING TO CAUSE AND FLIGHT CONDITIONS 1976 THROUGH 1983

CALENDAR YEAR

FIGURE 9. THE INCIDENCE OF UNCONTAINED ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION 1962 THROUGH 1983

CAFELONS ALMS

APPENDIX A

Data of Rotor Failures in U.S. Commercial

Aviation for 1983 Compiled from the

Federal Aviation Administration Service

Difficulty Reports.

DATA COMPILATION KEY

Component Code:				
F – Fan				
C - Compressor				
T - Turbine				
Fragment Type Code:				
D - Disk				
R - Rim				
B - Blade				
S - Seal				
N - None				
Cause Code:				
1 - Design and Life Predict	ion Probl	ems		
2 - Secondary Causes				
3 - Foreign Object Damage				
4 - Quality Control				
5 - Operational				
6 - Assembly and Inspection	Error			
7 – Unknown				
Containment Condition Code:				
C - Contained				
NC - Not Contained				
N - No Fragments Generated				
Flight Condition Code:				
1 - Insp/Maint				
2 - Taxi/Grnd Hdl				
3 - Takeoff				
4 - Climb				
5 - Cruise				
6 - Descent				
7 - Approach				
8 - Landing				
9 - Hovering				
10 - Unknown				

SDR NO. SUBMITTER AIRCRAFT ENG/LOC COMPONENT TYPE CAUSE CONDIT	INMENT FLIGHT FION CONDITION
02013031 HAL DC9 J18D C B 2 C	6
02083025 HAL DC9 J18D C B 3 C	C
02093023 HAL DC9 JT8D C B 3 C	1 A
02253036 TWA B727 JT8D T B 7 C	4
03293027 SWA B737 JT8D T B 7 C	3
04083032 VAL B727 JT8D UNK T B 2 NC	3
04153036 PAA B737 JT8D T B 7 C	3
05103040 USA DC9 JT8D T B 7 C	3
05113024 EAL B727 JT8D C B 2 C	5
05103038 PEX B737 JT8D C B 3 C	2
05183008 PEX B737 JT8D T B 7 C	3
05203036 PAI B737 JT8D T B 2 C	- 3
06033040 REP DC9 JT8D T B 7 C	4
06103003 NIA B727 JT8D T B 100 C	3
06103032 TAG B727 JT8D T B 7 C	4
06243036 TWA B727 JT8D F B 1 C	- 9 5
06223020 PEX B737 JT8D C B 2 C	3
06223022 PAT B727 JTT8D NO.3 T B 2 NC	3
07013020 ITAL B727 JTT8D NO.1 T D 7 NC	3
07013021 UAL $B727$ $TT8D$ T B 7 C	3
07083017 MTD DY9 TT9D T B 7 C	A land
07203007 mid $B727$ $Tmgp$ T B 2 C	4
07203007 IWA $B727$ $010D$ I B 2 C	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
08223003 PSA DC9 J18D I B I C	2
08303035 PEX B/3/ J18D C B 3 C	3
08303037 USA DC9 JT8D C B 2 C	3
08313032 REP DC9 JT8D C B / C	3
09123039 UAL B/37 JT8D T B I	3
09263013 USA DC9 JT8D T B 1 C	3
09203039 NWA B727 JT8D T B 1 C	4
09303082 REP DC9 JT8D C B 2 C	3
10033055 REP DC9 JT8D F B 1 C	3
10033056 REP DC9 JT8D C B 7 C	3
09293022 FDE B727 JT8D T B 7 C	3
10133001 USA DC9 JT8D T B 1011 C	3
10133003 USA DC9 JT8D T B 7 C	- 3
10143023 RYAN B727 JT8D T B 7 C	3
11103070 USA DC9 JT8D T B 7 C	5
11153050 WAA B737 JT8D T B 1 C	- 3
11213022 EAL DC9 JT8D T B 7 C	4
11253050 REP DC9 JT8D T B 2 C	5
11293041 IAS B727 JT8D T B 7	4
10253002 UAL B727 JT8D C R 2 C	5
12213048 UAL B737 JT8D T B 7 C	- 9 3
02033023 AAL B727 JT8D T B 7 C	4

A-2

					FRAGMENT	r I	CONTAINMENT	FLIGHT
SDR NO.	SUBMITTER	AIRCRAFT	ENG/LOC	COMPONENT	TYPE	CAUSE	CONDITION	CONDITION
00202040	DED	000	TITIOD	C	D	7	C	2
1014202049	REP	DC9	JIOD	C	Б	7	-	5
10143024	PEX	B/3/	JT8D	C		2		0
11103029	UAL	B/3/	JT8D	F		2		0
07123021	OZA	DC9	JT8D	F		3		3
12293031	AFL	B/3/	J.1.8D	F		3		3
04083014	WAL	B727	JT'8D	C		2		1
01263033	PSA	DC9	JT8D	F.		3		1
02013030	HAL	DC9	JT8D	C		5		2
02283029	PSA	DC9	JT8D	C		/		3
03043028	HAL	DC9	JT8D	C		3		1
03293010	GRA	DC9	JT8D	F		3		3
03293016	JAM	DC9	JT8D	F		3		1
03293017	JAM	DC9	JT8D	F		3		1
04223004	HAL	DC9	JT8D	C		2		6
05103030	REP	DC9	JT8D	F		3		3
05103037	JAM	DC9	JT8D	C		3		1
05103039	REP	DC9	JT8D	C		3		5
05183002	WAL	B727	JT8D	C		7		4
06223021	EAL	B727	JT8D	С		3		3
07083009	PSA	DC9	JT8D	C	I	7		3
07083012	HAL	DC9	JT8D	С	19.62	3		1
07143025	TSA	B737	JTT8D	C	19 <u>19 1</u>	3		3
08033029	PSA	DC9	JTT8D	F	Cartan D	3		10
08103043	RFP	B727	JTT8D	Т		7		5
08153032	PAA	B727	JTT8D	Ť		7		500
08223009	WAT.	B727	JTT8D	Ċ		3		3
08313035	REP	009	JTT8D	т		7		3
09133017	SWA	B737	TTBD	Ċ		3		4
09263022	HAT.	009	TTRD	C	0.22	7	and a	5
11213026	ACT	B737	TTRD	Ţ	1 mm	2		5
11253051	FMA	070		Ċ		7	100	5
11252052	LINI	DC9	TTOD	F		3	A1	1
11253055	NT-7D	DC.9		T T	- Contraction	7		4
11253061	ENT	D727		Ċ	Brann IV	2		3
11203002	CHI	D727	JIOD	C	1. C. T.	2		2
11293040	SWA	B737	JIOD	E	Silver Silver	2	- 11-12 P	2
10202000	FAL	DC9	J.1.8D	F	12122	2	1.122	1
10283009	JAM	B737	J.1.8D	C		2		1
12293017	MAU	DC9	J.I.8D	F		3		1
01243015	NWA	B/4/	J.1.9D	T	В	2	C	4
04153033	AWL	B/4/	J.1.9D	C	В	3	C	4
06223014	NWA	DC10	JT9D	Т	В	1	C	4
08163030	NWA	DC10	JT9D	Т	В	2	С	3
09203047	TWA	B747	JT9D	т	В	2	С	4
10133002	UAL	B747	JT9D	С	В	3	C	5
10113035	NWA	B747	JT9D	C	В	3	С	4
10203043	TWA	B747	JT9D	Т	В	1	C	5
09093015	NWA	B747	JT9D	т	В	2	C	5
01073009	PAA	в747	JT9D	F		3		3
09133027	NWA	DC10	JT9D	С		3		4

						FRAGMENT		CONTAINMENT	FLIGHT
SDR NO.	SUBMITTER	AIRCRAFT	ENG/LOC	COM	PONENT	TYPE	CAUSE	CONDITION	CONDITION
	scameron.	Califico -	SOT TWEE	203	10 00.	ALC: THE	ALK IN	G TTING?	08 AG8
11213021	TWA	B747	JT9D	1	F		3		3
11253074	FTL	B747	JT9D		F		3		4
10063061	ASR	WSTLND30	GEMMK 510) (C		1		1
10063062	ASR	WSTLND30	GEMMK510) (С	3707	1		1
09233042	ASR	WSTLND30	GEMMK510) (C		1		1
09233043	ASR	WSTLND30	GEMMK510) (C	0.707	1		1
08033144	ASR	WSTLND30	GEMMK510) (С		3		5
02153027	TWA	L1011	RB211	(С	В	2	C	10
09193044	DAL	L1011	RB211	- D - I	Г	В	7	C	4
09193048	TWA	L1011	RB211	(С	В	2	C	5
10203006	TWA	L1011	RB211	(С	В	2	C	4
08223006	TWA	L1011	RB211		г	В	1	C	4
02233052	EAL	L1011	RB211	(С		3		3
09303069	AMW	SA226	TPE331		т		2		1
08223048	PTO	SA227	TPE331	(-		3		5
04223087	CAC	SA227	TPE331		с Т		2		5
06103006	WRNO	CT.44	TYNE515		-	B	7	С	5
02153025	AFT	CI.44	TYNE515		Ţ		7		5
02133029	WIDNO	CLAA	TINE515		-		7		5
02243025	AC7	FH227	DAPT532	12.1	с т	в	1	C	1
02023013	PDT	FU227	DADTE 22		T T	B	7	C	1
04222014	CMD	CN/600	DARI 552		1	B	7	C	5
04223014	DI	VCIIA	DARI529		1	D	5	C	2
10203000	ADA	ISLLA	DARI 542		1	D	1	C	2
10203008	WRT	CV600	DAR1542		1	 D	1		2
05113027	AWA	DHC /	PI'6A		T .	В	2	C	3
30803025	EAM	SD330	P'I'6A	1	ľ	В	2	C	3
04153096	RAY	EMBIIO	P'I'6A	2.1	1'	D	/	C	4
08153041	CCD	B99	PT6A	1.1	C	В	1	C	2
10143036	PLG	B99	PT6A		C	В	7	C	5
04153028	MTR	SD330	PT6A	- 2.1	Г	В	7	C	2
06103012	MTR	SD330	PT6A	- T	Г	В	2	C	5
08313033	RMA	DHC7	PT6A		C	В	3	C	4
10283005	RMA	DHC7	PT6A	1.1	Т	В	2	C	10
11283091	CCD	B99	PT6A	- T	Т	В	7	C	5
07083049	RMA	DHC630	PT6A	0	Г	В	7	C	4
03213033	PCA	NORD262	PT6A	3.4	С	10707 1	3		5
03293019	PCA	NORD262	PT6A	(С		3		1,80
05033025	MTR	SD330	PT6A	. 5	Т		2		3
08293016	RMA	DHC7	PT6A	(C		3		4
10132013	AWA	DHC7	PT6A		C		2		10
04153076	RAY	EMB110	PT6A		г		7		4
03093105	PCA	NORD262	PT6A		С		3		1
03033015	MVA	SD330	PT6A	1.1	Г	0	7		5
05163062	MVA	SD330	PT6A		С	·	7		4
12063072	RMA	DHC7	PT6A		г	0	7		4
05033020	ASP	CV580	501	5.8	т	В	1	C	5
05183001	REP	CV580	501 UNK		С	D	1	NC	2
03243029	FLA	L188	501	÷.	т		2		5
10143027	CRA	CV580	501		C		3		3
	0.000	0.000			- ·				

					FRAGMENT		CONTAINMENT	FLIGHT
SDR NO.	SUBMITTER	AIRCRAFT	ENG/LOC	COMPONENT	TYPE	CAUSE	CONDITION	CONDITION
10203010	FLA	L188	501	С		7		5
11043001	PQA	CV580	501	т		7		3
11043007	PQA	CV580	501	С		2		4
04083027	JCS	B707	JT3D NO.	2 F	В	2	NC	3
04083029	UAL	DC8	JT3D NO.	1 F	D	3	NC	4
06103013	UAL	DC8	JT3D	F	В	3	C	3
08163031	UAL	DC8	JT3D NO.	1 E	S	7	NC	3
05033029	UAL	DC8	JT3D NO.	1 F	D	7	NC	5
05103035	GIA	B707	JT3D	F		3		3
06063045	NIA	DC8	JT3D	т		7		5
08243034	FAL	B737	JT3D	F		3		3
12213053	AWA	146200A	ALF502	т	В	2	С	2
04153044	DAL	DC8	CFM56	т	В	5	С	4
06243044	UAL	DC8	GFM56	т	В	7	С	3
08123033	UAL	DC8	CFM56	т		2		5
04153042	FDE	MD20	CF700	F		3		4
02023018	PAA	DC10	CF6	т	В	7	С	4
05103032	UAL	DC10	CF6	С	В	7	C	4
07123029	UAL	DC10	CF6	C	В	7	С	4
07133029	PAA	DC10	CF6	C	В	7	С	4
07203008	WAL	DC10	CF6	т	В	7	С	4
08033030	UAL	DC10	CF6	т	В	1	С	4
08083020	PAA	DC10	CF6	т	В	7	С	4
08153030	AAL	DC10	CF6	т	В	7	С	4
09203040	PAA	DC10	CF6	т	В	7	С	5
11153047	UAL	DC10	CF6	т	В	2	С	4
08153029	UAL	DC10	CF6	F		3		10
09133015	WAL	DC10	CF6	С		1		1
09133025	AAL	DC10	CF6	F		3		4

ENEL - CONTRACT MATCH NO ENTRALISITION OF

DOT/FAA Statistics on aircraft gas CT-89/5 turbine engine rotor failures that occurred in U.S. commercial aviation during 1983.

