Aircraft Engine Lubrication

What You Should Know

Edward B. Kollin Technical Director ASL

Background

Technical Director - Aircraft Specialties Lubricants Creator of "CamGuard"

Exxon Research and Engineering

- Director of the engine research for the Advanced Fuels and Lubricants Group
- Initial research on "Exxon Elite" aviation oil
- General Motors Research

Lubricant Functions

Lubrication

- Boundary (metal/metal) Cam/lifters Cylinders/rings
- Hydrodynamic Film (oil wedge) Crankshaft/ main bearings, rod bearings, cam bosses
- Cooling Heat transfer medium
- Sealing Piston rings & elastomer seals
- Cleaning and suspending Blow-by, lead & dirt

Aviation Oil Formulations

Simple Formulations

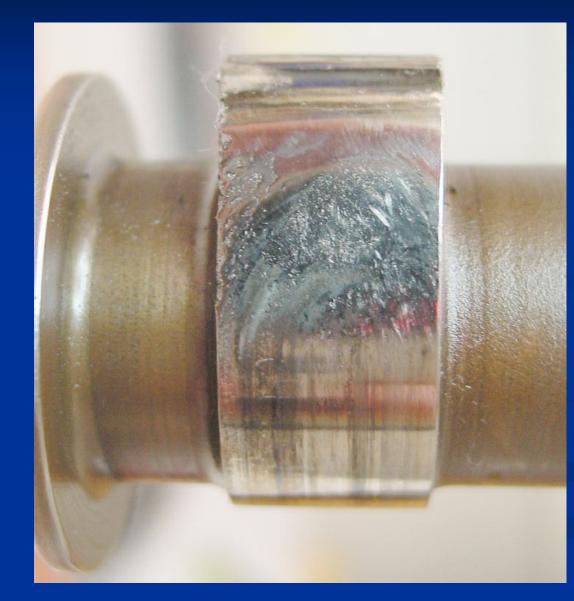
Base stock -90+% Mineral, Synthetic or blend

- Dispersant 3% Keep clean by suspending deposit precursors
- Viscosity Modifier (VM) 2% Changes straight weight to multi-weight 20weight oil + 2%VM=20W-50 multi-grade oil
- Antiwear 1% Cam/lifters rings/cylinders valves/guides
- Antioxidant 0.5% Prevent oxidation leading to deposits
- □ Corrosion inhibitors 0.05% Ferrous & non-ferrous metals
- Antifoam 20ppm Foam is terrible for heat transfer & lubrication

Major Obstacles to Making TBO

 Lack Of Use - Average Use <100 hours/year
 Time Sitting >8660 hours/year

Pitting Corrosion


Valve Lifter Face 196 Hours in 4 years 25 Hour oil changes

Camshaft Hard Surface Pitting

Cam lobe and bearing surfaces 200 hours

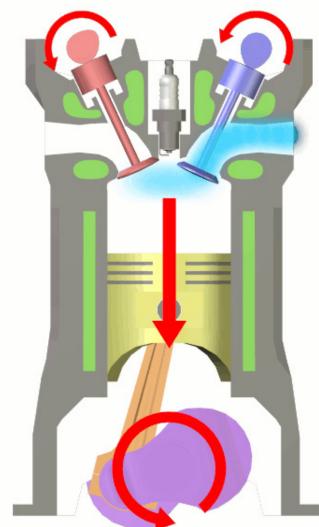
Spalled Cam Lobe

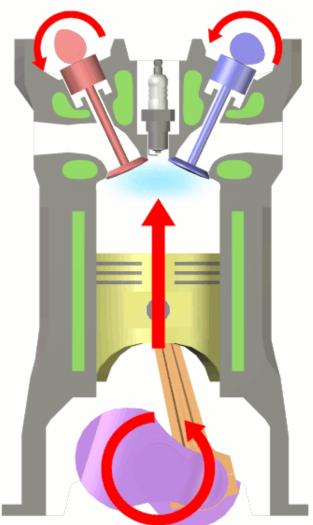
Pitting leads to catastrophic cam failure

250 Hours

Roller Cam Surface Pitting

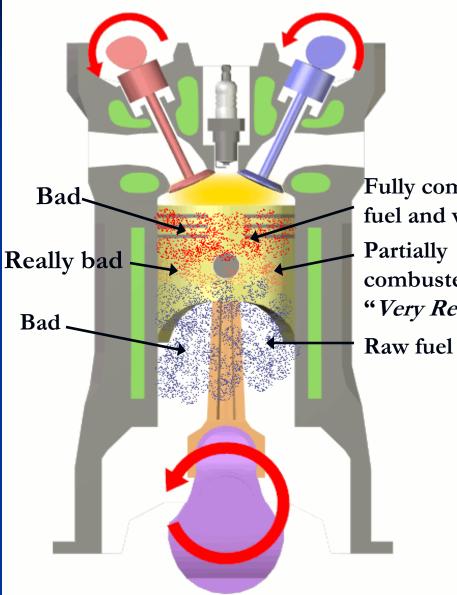
Rust affects all steel parts 300 Hours Not the solution to Lycoming cam problems

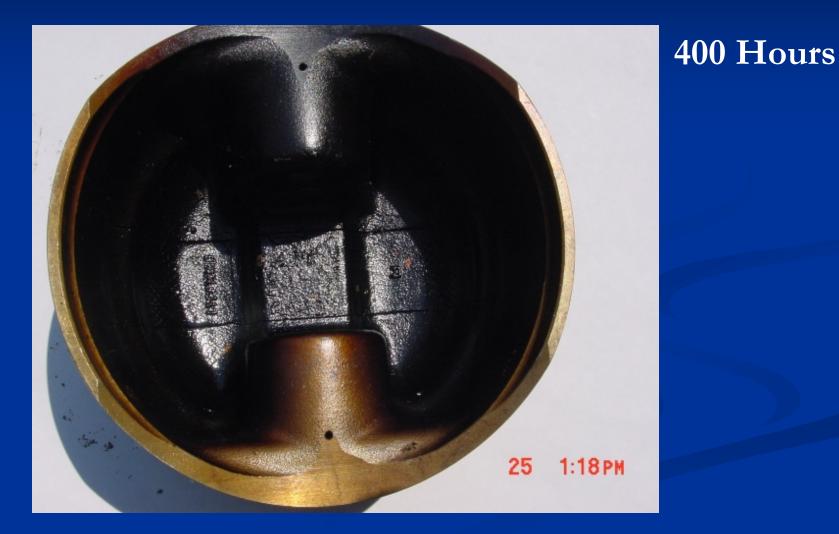

Major Obstacles to Making TBO


Lack Of Use - Average Use <100 hours/year
 Time Sitting >8660 hours/year

<u>**Blow-by**</u>

Highly reactive & corrosive "Reactive Deposit Precursors"
>0.1 gallons of fuel per hour through crankcase
Combustion of hydrocarbons produces water
1 gallon water produced per gallon of fuel burned
A lot of water in the crankcase

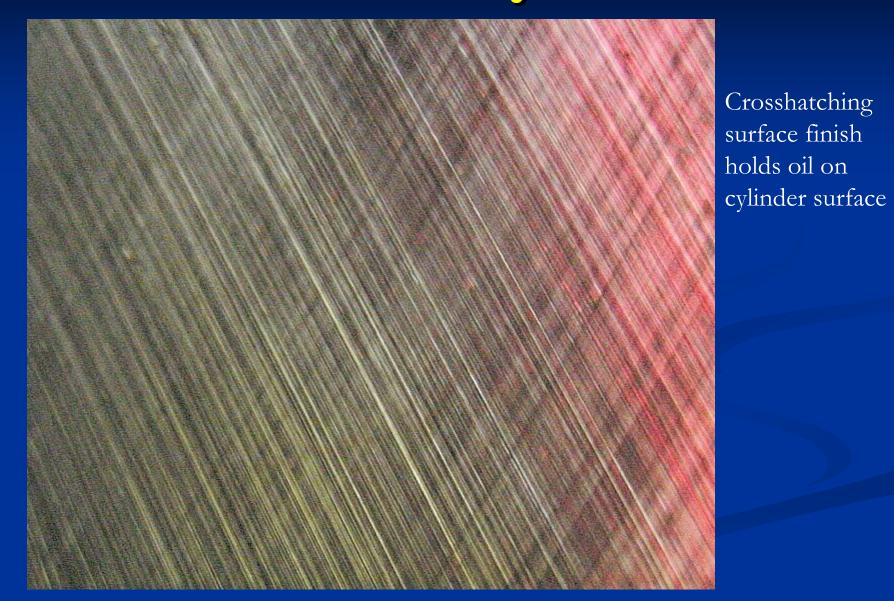

What is blow-byIntakeCompression


Ignition

Fully combusted fuel and water combusted fuel "Very Reactive"

Piston Deposits Reduce Heat Transfer/Pistons get Hotter & Hotter

Deposits >>> Stuck Rings



Stuck Ring

Rusty Ring Sludge

Scuffing

New Steel Cylinder

Cylinder Wear - Bore Polish

740 Hours Worn Out Continental IO-520 Rust / Polish Pattern

Major Obstacles to Making TBO

Lack Of Use - Average Use <100 hours/year

- Time Sitting >8660 hours/year
- <u>**Blow-by**</u>
 - Highly reactive & corrosive
 - DEPOSITS ring groove & valve guide
 - Sticking parts cause excessive wear & "morning sickness"
 - >0.1 gallons of fuel per hour through crankcase
 - >0.1 gallons of water from combustion /hour through crankcase
 - Combustion makes \approx 1 gallon water per gallon of fuel

Temperature (power) management

- Rapid temperature changes scuffing cumulative effect
- Cold temperatures Use multi-weight oils & preheat below 40 ° F

Piston Skirt Scuffing

400 Hours

Minimizing the Problems

Corrosion – <u>PREVENTION</u> is the only option

- Change oil often 25 to 35 hours or quarterly
- DO NOT leave dirty oil sitting in engine 15 Hour oil is **<u>CORROSIVE</u>**
 - Water contaminated with acids
- Use corrosion inhibiting oils or additives such as CamGuard

<u>NO ADDITIVE CAN CURE EFFECTS OF RUST</u>

Deposits – Lead to Sticking Parts and Excessive Wear

- Fuel components in blow-by <u>IS the CAUSE of DEPOSITS</u>
 - Lean aggressively on the ground & below 65% power (POH)
 - Multi-probe engine analyzers allow more aggressive leaning
 - LOP ROP debate
 - Use deposit inhibiting additives such as CamGuard

What the Oil Sees - 0 to 15 Hours

Dispersant bonds to "Deposit Precursors" ■ "Keep Clean" by suspension Combustion water reaches equilibrium ■ 100-1000ppm – Oil temperature dependent IMPORTANT to have ENOUGH oil consumption ■ 1 qt in 4-20 hours Oil consumption increases as oil becomes "stickier" Heavy oxidized FUEL components collecting

Oil 15-30 Hours

- Makeup oil 1 to 3 quarts \blacksquare shot of dispersant and A/O Deposit Precursors from blow-by overwhelming dispersant start to form: Lacquer > varnish > hard carbon deposits Combustion water becoming "Acidified" and corrosive Sludge - combination of lead particles (from
 - leaded avgas) and resinous lacquer
 - Can bake into heavy carbonaceous deposits

Engine "Painted" with Varnish

800 Hours Small sump Cirrus 50 hour oil changes

Lead Sludge Buildup - Crankshaft

Lead bromide + oxidized Fuel 2000 Hours Dispersant Cannot suspend lead particles

Oil 25-35 Hours Recommended Oil Change Interval

- Recommended for most aircraft
- Engine should be warmed up to operating temps by <u>FLYING</u>
 - Cut filter to look for metal, carbon & other stuff
- Organic acids & water in the oil are <u>very</u> corrosive
 - 0.1-2 ounces of water in crankcase Ground running increases water and NOT recommended
 - Minimal neutralization of acids in ashless oils
 - Neither water or acids can be filtered out of oil
- Regular oil analysis Establish a trend for engine

Frequency of Use Impact

Frequent Use Low wear rates reflected in Oil Analysis

 Carbon Deposits formed are softer and easily displaced Infrequent Use Corrosive environment Real Startup Wear (RUST) Cylinders Rust/Polish pattern Dimensional change Cam lobes & lifters Pitting and spalling Oil analysis erratic values

When To Overhaul

Low compression - Valve leakage or ring wear
 Boroscope cylinders

 Treat cylinders as accessory's & repair as required

 Excessive oil consumption

 Stuck or worn oil control rings

 Making metal

 Determine source and extent of engine contamination

Conclusions & Recommendations

- Fly Frequently as frequently as possible
 Frequent oil changes (25-35) hours or quarterly
 Power/temperature management
 Anti-corrosion oils or additives "*CamGuard*"
 Why Camguard was created
 Corrosion
 - Deposits
 - Wear
 - Seals

The Following Information is from the CamGuard Certification Effort

Pictorial of 500 Hour Engine Test Results Skybolt Aerobatic Aircraft Lycoming IO-540 300 HP 531.5 Hours TT Flown By Randy Harris Photos as engine was disassembled with 54 hour oil on parts Nothing was wiped down or solvent washed

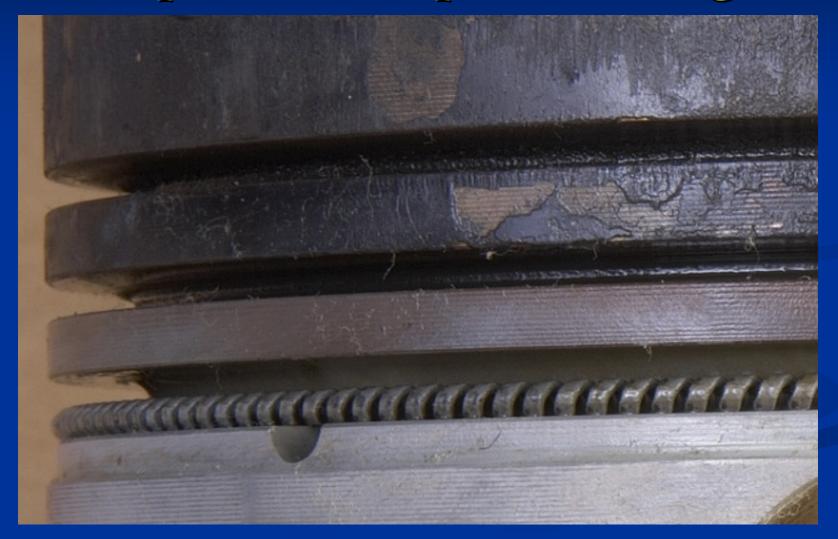
Typical Piston with Deposits

400 hours No Camguard

Pistons Clean With Camguard

Deposits >>> Stuck Rings

No Camguard Stuck Ring


Rusty Ring Sludge

Scuffing

Deposit Free Ring Zone and Skirt No deposits in the oil wetted areas with Camguard

Ring Groove Close-up No Deposit Buildup With Camguard

Parts Varnish and Deposit Free

Exhaust Valve Guides Zero Deposits – Zero wear typical

No Deposits or Sludge with Camguard

Piston Pin Free & Easily Removed

Lifter Faces No Wear – No Corrosion*

*Plane sat idle for almost 4 months

Cam Lobe-No Wear-No Corrosion*

*Plane sat idle for almost 4 months

Flight Testing CamGuard

•Oil additives are approved by testing in accordance with Advisory Circular 20-24B

•CamGuard was tested beyond the 'typical operational environment'

•No other operation is as abusive on an aircraft engine as demonstration flying.

Conclusions

- CamGuard first real alternative to marginal commercial oils
- Single package demonstrates multiple benefits
 - Corrosion
 - Deposits
 - Wear
 - Seal issues
- Addresses SB's and SI's