Future Automotive Challenges & Opportunities

www.ricardo.com

Professor Neville Jackson Chief Technology & Innovation Officer Ricardo plc 22nd November, 2017

Delivering Excellence Through Innovation & Technology

© Ricardo plc 2017

Air Quality

Low Noise

Sustainable

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

Global long term GHG targets consistent – City Authorities & Planners also increasingly focused on "healthy Lifestyles & Environments"

• Europe:

- -40% reduction in GHG by 2030 (1990 basis)
- 89-95% reduction in GHG by 2050 (1990 basis)

• China:

- 20% of energy from low-carbon sources by 2030
- CO_2/GDP reduced by 60-65% by 2030 (ref. 2005)
- USA (prior to President Trumps withdrawal):
 - 26-28% reduction in GHG by 2025 (2005 basis)
 - 83% reduction in GHG by 2050 (2005 basis)

- City Planning & Policies:
 - Ultra Low Emission Zones
 - Walking, Cycling, Public Transport Prioritised

What are the implications for energy supply, powertrain technologies & business models?

Traffic congestion, pollution, parking, air quality, safety and affordability are all driving demand for radical interventions

- UK to ban "conventionally" fuelled cars by 2040 (excludes hybrids of all types)
 - London congestion charge & ULEZ, restrictions on diesels, alternative fuelled taxis and buses.
- Germany's Bundesrat resolution to ban the internal combustion engine starting in 2030
 - Hamburg plans 40% of city car free by 2034.
 - Vauban (Freiburg) has banned cars, residents rent a €20,000 parking space on the city outskirts
- Finland, Helsinki overhauling public transport via smartphones; car ownership pointless by 2025.
- France, Paris plans to ban diesel vehicles by 2020
- Amsterdam is to ban city centre cars on Saturdays, to reduce motor traffic and pollution
- China & California ZEV mandates: China plan to phase out vehicles powered by fossil fuels

 wrrce: Media reports

(London Smog 1952)

The "clean air" agenda has driven Governments towards ZEV mandates due to a perceived lack of progress in electrification

BEV & PHEV Market Share Proposals & Mandates

- Many Governments have stated objectives and policies for phasing out combustion engine vehicles before 2050
- UK intention has been to eliminate conventional gasoline & diesel passenger cars by 2040 as part of a "clean air" strategy
- EU working on proposal (with UK support) to introduce EU wide mandate/credit for ZEV vehicles in 2025-2040 timeframe
- There are already >500 individual restrictions on ICE vehicle use in specific zones in European Cities

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

Electrification is only one part of the future transport solution – we will still require low carbon liquid fuels for many decades...

Electrified roads for heavy duty applications – a possibility for specific environmental challenges?

Source: recombu.com:Sweden is testing electric roads for trucks, ITS International: Using electricity to power road freight

© Ricardo plc 2017

- Safety Issues:
 - Need dual catenary as no road surface connection
- Power:
 - Total power input for multiple HGV's on an incline likely to be 5-10 MW
 - Initial trials at 600
 volts not compatible
 with multi-vehicle
 demands
- Costs
 - \$5–6 million per km
 likely to be prohibitive
 - Who pays?

Ultra Low or Zero carbon trucks – probably a choice between H_2 Fuel cells with renewable hydrogen or Bio-Waste/Power to Liquid Fuels

<>

H₂ Fuel Cell Trucks – Toyota/Nikola Motors

Renewable "Synthetic" Fuels

Source: Ricardo Analysis, SAE 2015-26-0038 Opposed-Piston 2-Stroke Multi-Cylinder Engine Dynamometer Demonstration, Cousin Of The Chainsaw Engine Could Power 100-MPG Car © Ricardo plc 2017

11

November 2017

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

GHG reductions beyond 2025 not yet defined but likely to continue – 2030 targets defined on more holistic basis?

RICARDC

Batteries & Electrification

Electrification can be applied in a number of configurations - no "one size fits all" solution – 48 volt systems for volume & PHEV for premium

Micro/Mild: Solution for the "Average Car"

- Ricardo HyBoost ~ 95 g/km in "C" class car
- Ricardo ADEPT ~ 70 g/km in family car via 48v systems
- Micro-hybrid 48v architecture under development since 2011
- Below 60v "hazardous" threshold

Full Hybrid: Niche or High Performance

- Prius best-selling hybrid but, at 70 g/km cost/benefit eroded by 48 v systems?
- New WLTP cycle reduce benefits of hybrid systems
- KERS systems make sense in supercars

Plugged In: The Future? – From Premium to Volume

- BMW i3 EV with optional range extender
- **Tesla** shows that there is a market for a premium "eco" product
- Favourable treatment in legislative cycles makes PHEV technology attractive in larger premium vehicles

Growth in automotive electronics and electrical system functionality has led to rapid growth in power demands

Power (W)

Engine	Fuel Pump/Injectors	140
	Throttle	60
	Ignition	60
	Sensors & Actuators	120
	Solenoids/Relays	25
	P/T ECU	80
	Coolant Pump	400
Transmission	Clutch Actuation	250
	Gear Selection	150
Chassis/Body	Elec Power Steerina	350
	Brake by Wire	250
	HVAC	4500
	Heated Screen	500
	Window	600
	Power locks	200
	Wipers/Washers	150
	Seat Actuation	400
	Body ECU	80
Lighting etc.	Headlamps	120
	Side Lights	100
	Turn Signals	120
	Reversing	50
Infotainment	Audio System	300
	Navigation/GPS	150
	Information Displays	40
	HVAC Venting	80
	HVAC Blower	400

- Number of vehicle electrical/electronic continuing to increase
 - Challenges for both average and peak power demands Multiple ADAS/Autonomous processing requirements also a major future challenge
 - Power demands beyond limit of 12 volt functionality & will drive introduction of 48 volt powernet

Function/Power Requirements

Total

9675

To accelerate EV/PHEV penetration and move beyond the innovator/early adopter market, focus on "User Centric" attributes and requirements

OEM's will fit larger batteries to EV's - growth implications for Li-ion battery manufacture – mostly in China in the short term

OEM	Model	Production	Range (miles)
Chevrolet	Bolt	2016	238
Hyundai	loniq	2017	110
Ford	Focus	2017	110
Fisker	E-Motion	2017	400
Renault	Zoe	2017	186
Tesla	Model 3	2017-8	200
Audi	etron SUV	2018	310
Aston Martin	Rapid E	2018	200
Jaguar	I-Pace EV	2018	220
Faraday	FF91	2018	378
Tesla	Roadster	2019	400
Tesla	Model S	2019	500
Mercedes	Gen EQ	2019	300
Volvo	full size	2019	200
Audi	A9 etron	by 2020	300
Nissan	Leaf	by 2020	200
Porsche	Mission E	by 2020	310
VW	I.D. Concept	by 2020	240
BMW	i5 SUV	2021	300

- Majority of new lithium-ion battery capacity is currently being built in China
- Many national governments are providing substantial incentives to attract EV battery manufacture
 - Battery manufacturing location may influence vehicle assembly operations

Many xEV market forecasts have been published – Recent forecasts generally less bullish but data suggests considerable uncertainty

Source: Published forecasts and Ricardo dat

18

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

If our objective is to reduce environmental impacts and improve sustainability, are we looking at the bigger picture?

- "In-Use" RIP "Fuel" Production **Disposal/Re-cycle** Generate Distribute Processing **Materials**
- Impacts from conventional combustion engine vehicles mostly from "in-use" phase
 - Materials, manufacturing and fuel production account for 20-30% of total life cycle
 - Electric and H₂ Fuel cell vehicles currently generate most impacts from energy or fuel generation, materials, processing & production
 - 30-70% of total life cycle depending on battery size, grid carbon intensity & mileage

A recent review of published Life Cycle Emissions for batteries suggests that embedded GHG emissions range from 150-200 kg CO_{2eq}/kW.hr

Source: The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries – Romare & Dahllof, IVL Sweden
© Ricardo plc 2017

Embedded CO₂ estimated at 150-200 kg/kW.hr

About half from material extraction & processing, the other half from manufacturing:

- Manufacturing emissions dominated by electricity use and associated grid carbon intensity
- Lower grid carbon intensity reduces manufacturing CO₂

The majority of embedded GHG emissions are from the battery electrodes

Re-cycling of battery materials remains challenging and adds around 15 kg/kW.hr CO_{2eq}

November 2017

Current battery production GHG emissions ~ 150-200 kg/kW.hr – 240 mile battery equivalent to 40 mpg gasoline vehicle travelling 70,000 km?

Source: Ricardo analysis; The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries – Romare & Dahllof, IVL Sweder

Grid voltage levels and charging times for 250+ mile range 85 kW.hr battery – to charge at >15 miles/hour need three phase supply

Source: Ricardo analysis © Ricardo plc 2017 * = charge level within charging time from low State of Charge

Auto Industry concerned that Infrastructure will limit market penetration – Supply/Network operators currently unconvinced about early action

- To achieve EV market uptake, need longer range and improved charging facilities
- Local urban/city networks are insufficiently sized to support even low uptake of EV's and Plug-in vehicles
- Average electricity demand will only increase gradually but "peak" demand will be an issue (EV owners all charge at same time)
- Network Operators believe that overall average power demand for xEV's will be insignificant before 2030
- There is no business case for recharging facilities, particularly fast charge – all will need high subsidies
- Local network issues will be resolved by demand control and strategic positioning of recharge facilities

Note: EU Directive 2014/94/EU4 provides an obligation on member state governments to expand the network of charging points (CP), as the number of vehicles in service grows – there is no guidance on funding requirements

ource: Ricardo Analysis, UK OLEV, Role of the power sector for Electromobility - Iberdrola © Ricardo plc 2017 RICARD

City/Urban journeys dominated by ZEV mobility - Infrastructure & the Built Environment likely to be the controlling limit on EV penetration

- Focus on healthy living & sustainable utilities
- Air Quality Imperative for Zero Tailpipe Emissions
- Drive towards multi-modal (road/rail/metro) mobility:
 - Walking, Cycling, Ride Sharing (public & private)
- Battery Giga-factories:
 - 15-20 in EU alone (at €4-€5 billion each¹) for 30-40% EV penetration
 - Need to assess and minimise total environmental impact:
 - Embedded CO₂, rare material mining/extraction, toxic waste etc.
- Refuelling/Recharging infrastructures:
 - Introducing new infrastructures prohibitively expensive
 - Extensive "smart grid" system implementation?
 - Electricity *distribution* capacity insufficient to support large scale (350+ mile range) EV penetration – upgrade costs:
 - Germany €150b+², UK €15b+³ & smart grids?
 - Smaller batteries and lower ranges more compatible with existing city/urban networks
 - Intercity/longer range refuelling/recharging better served by low/zero carbon "drop-in" conventional fuels or renewable hydrogen network

electricity

Grid distribution limitations & intermittent domestic solar PV will drive home storage market – Large/expensive packs required for fast charge

Opportunity:

- Total annual electricity demand to support 30% EV pass car market relatively small
- Main issue is timing of demand & local grid capacity for anything more than 3-7 kW charging
- Domestic Solar PV growth could reduce grid demand if combined with local/home storage
- Potential market growth for home storage or fast charge "battery banks" i.e. as developed by BMW i

Challenges:

- Embedded CO₂ in battery materials/manufacture
- Continuous battery cost reduction may make second life more expensive than use of "new" cells

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

Ricardo view of the 2030 passenger vehicle electrified powertrain mix - penetration rates by powertrain type will vary by segment

Powertrain mix 2030 – developed markets – *high level of charging infrastructure*

Vehicle segment Powertrain mix by manufacturer

Ricardo view of the 2030 passenger vehicle electrified powertrain mix - penetration rates by powertrain type will vary by segment

RICARDO

Powertrain mix 2030 – developed markets – *Limited charging infrastructure*

Vehicle segment Powertrain mix by manufacturer

COP21 GHG targets in transport not straightforward – Need efficiency improvements, new energy vectors & carbon intensity reductions

Without technology innovations, road transport CO_2 will be 4x 2050 target due to increased demand Propulsion technologies, lightweighting, aerodynamics, rolling resistance etc.

2050 Targets (-80+% GHG) Efficiency improvements

Reducing carbon intensity of energy/fuels

Mobility System focus: Logistics/ride sharing & Mobility as a Service via connected & autonomous technologies

- Reducing carbon intensity of energy/fuels:
 - Gasoline/Diesel --- Increasingly renewable content sustainable bio, algal & synthetic fuels
 - Natural Gas \rightarrow Increasing H₂ content, biogas and e-gas
 - → Increasing renewables/low carbon intensity/central & distributed storage
 - Hydrogen

Electricity

→ From Natural Gas reforming to renewable sources (e.g. large scale electrolysis)

Vehicle (energy per vehicle km)

Increasing requirement for intermittent renewable energy storage – H_2 may be lowest cost approach?

- Multiple options for renewable H₂:

Passenger, Goods (energy per pass. km or tonne km)

- Heat (via NG networks)
- Transport
- Displacing fossil H₂ in oil refineries

ERTRAC analysis for 80% reduction in road transport GHG - half of energy from electricity by 2050 – remainder from Bio & Waste

- By 2050, ~50% of all road transport energy from electricity. The remainder comes from chemical energy
 - Chemical energy (including H₂) for energy intensive transport (HGV & high speed journeys / intercity)
- Choice will be between decarbonising legacy (diesel/gasoline) fuels or investing in new infrastructures for H₂ generation & supply for transport – largely defined by economics and national fiscal policies
- Fuel Cell propulsion system cost challenges will be overcome renewable H₂ supply driven by need for "storage" of intermittent renewable electricity and to reduce carbon intensity of domestic heating
- Increasing focus on "total environmental impact" will drive more holistic balance between use of critical materials, embedded and emitted emissions and recycling/re-use

Source: Automotive Council, *ERTRAC, E4tech, Element Energy, Ricardo analysis

Contents

- Market & Policy Drivers
- Transport Energy Options
- Electrification of Transport
 - Vehicle Technologies
 - Life Cycle & Energy Infrastructure Challenges
- Future Propulsion Mix to meet Environmental Goals
- i-Mobility, Connected Vehicle Data & Autonomy

November 2017

Connected & Autonomous functionality offers a range of benefits to both consumers and city/local authorities

- Key drivers for autonomous control of vehicles:
 - Improved safety:
 - We will not achieve targeted reductions in road transport casualties without addressing human error – responsible for 90+% of road transport accidents
 - Consumer benefits:
 - Less "wasted" time commuting or travelling using road transport
 - Improved vehicle utilisation passenger cars spend ~95% of their life parked:
 - The interaction with connected services offers an opportunity to develop "on-demand" services where vehicle utilisation can be increased – both passenger car and goods transport
 - Can reduce parking demand a major issue in most cities
 - Improved use of infrastructure average vehicle occupancy is 1.4 people/car
 - Increasing the number of passengers per vehicle or goods per vehicle via the interaction with connected services offers potential reductions in congestion and reduced journey times

Passenger cars more complex than any other volume product – Significant implications for future vehicle electrical systems

electronics industry estimated at \$275bn/year by 2020 - ~70% of vehicle value in

> electronics/control/ software by 2030?

- Premium vehicles contain ~ 100 microprocessors networked throughout the car
 - More than an Airbus A380
- Current "autonomous" vehicles process around 1 teraflop of information and continues to grow predictions suggest processing at petaflop capacity required in practice
 - GPU power consumption ~ 1 kW/10,000 processing cores
 - Latest NVIDIA Pegasus board ~ 10¹⁴ FLOPS consumes 0.5 kW + air cooling

A human brain has ~ 100 billion neurons & 1000 trillion connections – when will a computer match this capability?

 1964 First Supercomputer (CDC 6600) rated at 3 megaflops (10⁶ calculations/second)

RICARD

- Single core (CPU) and cost ~\$60 million equivalent today
- 2016 Chinese Sunway TaihuLight Supercomputer rated at 10¹⁷ FLOPS (similar to human?) using 10,649,600 cores
- Power consumption estimated at 15 MW
- Total computer system occupies around 80 m³
- Human brain consumes ~20 W

A qualitative/pattern recognition route to autonomous control more effective than an algorithm & rule based approach?

- Will we be able to deliver fully autonomous vehicle functionality via an algorithm and rule based approach?
- Or will we need to move to a "qualitative" rather than "quantitative" processing approach:
 - An analogue rather than digital processing environment that recognises and responds to pattern recognition via pre-defined reaction – much like we do?

PATTERNS AND **DEEP LEARNING**

"Aoccdrnig to a rseecharer at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe."

Neural networks:

Focus on the right outcome from a recognised input rather than a rulebased (and very time consuming) objective analysis

Microsoft

There are many regulatory, legal and financial challenges facing the introduction of fully autonomous vehicles

RICARDC

Autonomous rollout via initial trials in restricted environments for both people & goods - Certification process also critical

A Vision of Future Mobility – Fully co-operative, multi-modal ondemand systems – Public & Private transport converges....

November 2017